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Abstract. Success in adversarial environments often requires investment into additional re-
sources in order to improve one’s competitive position. But, can intentionally decreasing
one’s own competitiveness ever provide strategic benefits in such settings? In this paper, we
focus on characterizing the role of “concessions” as a component of strategic decision mak-
ing. Specifically, we investigate whether a player can gain an advantage by either conceding
budgetary resources or conceding valuable prizes to an opponent. While one might näıvely
assume that the player cannot, our work demonstrates that – perhaps surprisingly – conces-
sions do offer strategic benefits when made correctly. In the context of General Lotto games,
we first show that neither budgetary concessions nor value concessions can be advantageous
to either player in a 1-vs.-1 scenario. However, in settings where two players compete against
a common adversary, we find opportunities for one of the two players to improve her payoff
by conceding a prize to the adversary. We provide a set of sufficient conditions under which
such concessions exist.
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1 Introduction

Strategic advantages are often held by competitors that possess more budgetary resources that
can be invested in more advanced technology, research, or surveillance in order to improve one’s
competitive position against opponents. Such factors are central to many domains that feature
competitive interactions, such as airport security [20,27], wildlife protection [30], market economics
[18], and political campaigning [26]. In this paper, we analyze “concessions” as a viable, alterna-
tive component of strategic decision-making in adversarial environments. In particular, we seek to
identify whether or not conceding one’s competitive position can ever be advantageous. Intuitively,
concessions would appear to be contradictory to the conventional wisdom on how to gain a strategic
advantage, e.g., investing in more resources or information, as concessions weaken one’s competitive
position. Nonetheless, this paper demonstrates that such intuition is false as appropriately chosen
concessions can often be strategically beneficial.

Within the framework of General Lotto games, we study two types of concessions. The first
type, which we term budgetary concessions, involves willingly reducing one’s resource budget. The
act of “money burning” serves as an analogy for this type of concession. The second type of con-
cession, which we term battlefield concessions, involves voluntary non-participation on a non-zero
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valued battlefield. An appropriate analogy for this type of concession from economoics is “market
abandonment”. In these scenarios, we assume that concessions are announced to all other play-
ers immediately after they are made, such that the other players can respond strategically to the
modified competitive environment.

General Lotto games, Colonel Blotto games, and other contest models offer a flexible framework
to generate basic insights about the interplay between a competitor’s performance guarantees and
the amount of resources reserved for competition [3,6,9,13,14,23]. In common formulations, two
opposing players have limited resource budgets to allocate to multiple battlefields. A player wins a
battlefield and its associated value if she sends more resources than her opponent. To study the role
of concessions as a strategic component, we continue this section with a brief overview of General
Lotto games and describe our extensions that allow us to study concessions under this model. We
also provide a summary of our contributions, namely, the identification of settings where concessions
are beneficial. Finally, we draw connections between our work and the related literature.

1.1 General Lotto games with concessions

The General Lotto game is played between two opposing players, A and B, who each have a limited
budget of resources XA, XB ≥ 0. The players compete over a set of n battlefields B = {1, . . . , n},
where a player wins a battlefield b ∈ B and its value vb ≥ 0 by allocating more resources to b
than the opponent. The players make moves simultaneously (i.e., a one-shot game). Each player
can use randomized allocations such that the resources spent do not exceed its limited budget in
expectation. We denote an instance of the General Lotto game with GL(XA, XB ,v), where v ∈ Rn

≥0

is the vector of battlefield valuations. The equilibrium strategies and payoffs in any instance are
characterized in the existing literature [13,15], and we reproduce these in Section 2.

We consider the following extension in order to study the strategic role of concessions in General
Lotto games: One of the players, say player B, has the option to either voluntarily reduce her own
resource budget, or to voluntarily withdraw completely from a chosen battlefield, before engaging
with A in the resulting General Lotto game. Specifically, B selects one of the following options:

– Budgetary concession: Player B selects some nonzero value x ∈ [0, XB ], whereupon her resource
budget is reduced from XB to XB − x.

– Battlefield concession: Player B selects a battlefield b ∈ B. The value of the battlefield, vb, is
immediately awarded to player A.

The complete competitive interaction between A and B occurs in two stages. In Stage 0, B decides
to concede either budgetary resources or a battlefield to A, as described above. Player B’s decision
in this stage then becomes binding and common knowledge. Subsequently, in Stage 1, the players
engage in the resulting General Lotto game. If a budgetary concession of x ∈ [0, XB ] was made in
Stage 0, the game GL(XA, XB −x,v) is played and the players receive their respective equilibrium
payoffs. If a battlefield concession of b ∈ B was made in Stage 0, the value vb is immediately awarded
to player A, and the game GL(XA, XB ,v−b) is played. Here, v−b is the vector of valuations for the
battlefields B\{b}. We say that a player has a beneficial concession if there exists any concession
such that the player secures a strictly higher payoff than her payoff in the nominal General Lotto
game (i.e. without concessions). For example, if player B has a beneficial budgetary concession
in the General Lotto game, then there exist parameters XA, XB > 0, v ∈ Rn

≥0 and x ∈ [0, XB ]
such that B’s equilibrium payoff is greater in GL(XB −x,XA,v) than in GL(XB , XA,v). Our first
contribution is as follows:
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Contribution 1. There never exist concessions of either type that improve a player’s payoff in the
General Lotto game (Proposition 1).

1.2 Three-player General Lotto games with concessions

Contribution #1 conforms with the conventional intuition that concessions only ever weaken one’s
position in competitive scenarios. We thus seek to address whether this phenomenon holds more
generally. To that end, we shift our focus to a three-player setting, in which players B and C compete
in General Lotto games against a common adversary A over two disjoint sets of battlefields BB ,BC

whose valuations are given by the vectors vB ,vC , respectively. This formulation was first proposed
and studied in [16]. The top diagram in Figure 1a depicts a nominal three-player Lotto game
(under no concession options). We consider the case where only player B has the option to make
concessions. The competitive interaction occurs over three stages as follows, where players’ actions
become binding and common knowledge in subsequent stages:

– Stage 0: Player B decides to make either a budgetary or battlefield concession;
– Stage 1: Player A deploys resources XA,B , XA,C ≥ 0 to the two competitions against B and C,

where XA,B +XA,C ≤ XA must be satisfied; and,
– Stage 2: Player A engages in the two resulting General Lotto games. If a budgetary concession

of x ∈ [0, XB ] was made in Stage 0, then she plays the game GL(XA,B , XB − x,vB) against
player B. Else, if a battlefield concession of b ∈ BB was made in Stage 0, then she plays
GL(XA,B , XB ,vB,−b) against B, where vB,−b denotes the vector of valuations for battlefields
B\{b}. The game GL(XA,C , XC ,vC) is played against player C.

The bottom diagram in Figure 1a depicts the scenario following a battlefield concession. In Stage 1,
we assume player A employs an optimal division of resources such that her cumulative payoff from
the two General Lotto games in Stage 2 is maximized. Such optimal divisions are characterized in
the literature by [16], and we reproduce these results in the forthcoming Section 2. In this three-
player setting, we say that B has a beneficial concession if there exist any concessions such that B
secures a strictly higher payoff than her payoff in the nominal three-player General Lotto game, i.e.
if B were to make no concession in Stage 0. Our second contribution is as follows:

Contribution 2. In three-player General Lotto games, there never exist budgetary concessions
that improve a player’s payoff (Theorem 1); however, there do exist battlefield concessions that
can improve a player’s payoff. Theorem 2 provides a set of sufficient conditions for when such
opportunities are available.

In the standard, two-player General Lotto game, we show that beneficial concessions do not exist,
and, indeed, our result concerning budgetary concessions in the three-player General Lotto game
further supports this näıve intuition. However, our results show that beneficial battlefield conces-
sions do exist in three-player General Lotto games, contradicting the conventional wisdom on what
constitute viable mechanisms for gaining strategic advantages. More generally, our results suggest
that concessions do, in fact, represent reasonable strategic options in competitive interactions.

As our main objective is to establish whether it is possible that beneficial concessions exist in
three-player General Lotto games, we consider budgetary concessions of value x ∈ [0, XB ] and show
that x = 0 maximizes player B’s final payoff. Similarly, in the case of battlefield concessions, instead
of considering possible values in the vector vB , we focus on identifying the battlefield concession
value v ∈ [0, ΦB ] that maximizes player B’s final payoff, where ΦB is the cumulative value of
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battlefields in BB . When v > 0, B has a beneficial battlefield concession in any corresponding
three-player General Lotto game with vb = v for some battlefield b ∈ BB . In the following example,
we identify the occurrence of beneficial battlefield concessions for player B, and the magnitude of
B’s payoff improvement under various parameterizations of the three-player General Lotto game:

Consider a three-player General Lotto game in which players’ initial budget endowments satisfy
XA, XB ∈ [0, 4] and XC = 1, and where the cumulative battlefield values in fronts BB and BC

are ΦB = 1.5 and ΦC = 1, respectively. For every such game, we compare player B’s payoff in
the nominal game against her payoff after a battlefield concession of each value v ∈ [0, ΦB ], and
identify the optimal battlefield concession value vopt. Figure 1b illustrates the regime of initial
player budgets in which there exist battlefield concessions of any value v ∈ [0, ΦB ] such that player
B’s payoff in the resulting game is strictly higher than her payoff in the corresponding nominal
game (i.e., the regime where there exists a beneficial battlefield concession for B). Figure 1c shows
the percentage improvement over player B’s payoff in the nominal game associated with conceding
the corresponding optimal battlefield concession value vopt. We plot this percentage improvement
for XA ∈ [0, 2.5], and XB = 0.5 (dashed line) or XB = 1.25 (solid line).

Intuitively, our results illustrate that battlefield concessions in the three-player General Lotto
game – if done properly – can redirect more of player A’s budget toward player C’s set of battlefields,
rather than drawing more of A’s budget to B’s remaining set of battlefields, as the remaining value
on B’s set of battlefields, ΦB−vopt, becomes less of a priority for A. In a sense, the conceding player
“appeases” the common adversary by freely offering up a portion of the cumulative battlefield value,
and faces less competition as a result. The presence of the additional player C is critical for there
to be benefits derived from such concessions. In contrast, budgetary concessions invite A to further
pursue her contest against the weakened player B. A budgetary concession reduces B’s strength
with no change to the cumulative value of the battlefields. This increases the ratio between value
and strength on BB , and leads to A seeking even more value from that front.

1.3 Related Works

A primary line of research in Colonel Blotto games focuses on characterizing its equilibria. Since
Borel’s initial study [3], many works have advanced this thread over the last one hundred years
[2,9,15,17,23,24,28]. However, solutions to the most general settings remain as open problems. As
such, there are several variants of the Colonel Blotto game that have been studied extensively, none
more so than the General Lotto game [1,13,15,19]. Notably, the players’ equilibrium payoffs in the
General Lotto games have been fully characterized [13,15]. Due to its tractability, the General Lotto
game is often adopted in studies of more complex adversarial environments, including engineering
domains such as network security [7,10,25] and the security of cyber-physical systems [5,12].

Our work in this paper is closest to a recent thread in the literature on similar sequential
Colonel Blotto and General Lotto games, where players have the option to publicly announce their
strategic intentions ahead of play. The three-player General Lotto game was first introduced in
[16], who study their own variant model where in Stage 0, players B and C have the opportunity
to form an alliance that takes the form of a unilateral budgetary transfer between the players. It
is shown that there are cases in which the two players can make unilateral budgetary transfers
that are mutually beneficial. Subsequent work in [11,12] considers similar settings where the two
players can decide to add battlefields in addition to transferring resources amongst each other.
Counter-intuitively, under this model, both the players achieve better payoff if the transfers are
publicly announced to their adversary. The authors of [4] identify a sufficient condition for when
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Fig. 1: (a) The top diagram depicts the nominal three player General Lotto game, where the adversary (A)
must decide how to divide its endowment to two separate fronts of battlefields, with cumulative values of ΦB

and ΦC , respectively. The optimal division for A and the resulting payoffs are well-known from the literature
[16]. The bottom diagram shows a scenario where player B concedes a battlefield of value v ∈ [0, ΦB ]. The
adversary responds by re-calculating her optimal division based on the modified environment. We seek to
answer whether B can benefit from concessions. (b) The parameter region (in blue) where player B has
an incentive to concede battlefields. Here, we set XC = 1 and the total valuations of the two fronts are
ΦB = 1.5, ΦC = 1. (c) The percentage improvement over player B’s payoff in the nominal three player
game (without concessions) associated with the optimal battlefield concession. We plot the improvements
when XB = 0.5 (dashed line) and XB = 1.25 (solid line) for all values XA ∈ [0, 2.5], as depicted in (b).

publicly pre-committing resources to battlefields offers strategic advantages in the same three player
setting. Pre-commitments are a broader class of concessions, where instead of giving away value,
the pre-committing player puts a price in terms of budgetary resources on a battlefield. The pre-
commitment of resources is also studied in [29], but in a different context that involves favouritism.
In that work, a one-shot Colonel Blotto game is studied where resources are pre-allocated non-
strategically over the various battlefields. More broadly, interest in the role of pre-emption and
information in contests has popularized the analysis of sequential versions of these game models in
which one player leads the strategic interaction and the other follows (see, e.g., [8,21,22]). Though
the selection of concessions under our proposed framework is also sequential, we note that the
players’ strategic interactions still occur simultaneously in the final stage.

The formation of alliances such as those studied in [11,12,16] is often not possible, either be-
cause mechanisms for coordination between the agencies are not available or because the agencies’
budgets are not directly transferable. In contrast, concessions offer a means for a player to improve
her competitive position, even when mutual coordination is not possible. Another notable differ-
ence between concessions and alliances is that, while alliances can only lead to mutually beneficial
outcomes for the players involved, our results suggest that any benefits derived from concessions
by one player must come at an expense to the other.

2 Model

In this section, we review useful background on the standard, two-player General Lotto game, then
formalize the three-player General Lotto game model.
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2.1 Background on General Lotto games

The standard General Lotto game consists of two players A and B with respective, fixed budgets
XA, XB > 0 competing over the set of n battlefields B = {1, . . . , n} (i.e., front). A player wins on a
battlefield b by allocating more budget to b than her opponent, and otherwise loses on b.3 For each
battlefield b ∈ B, the winning player receives her value vb ≥ 0, while the losing player receives zero.
Let v ∈ Rn

≥0 denote the vector of battlefield values. An allocation is any vector x ∈ Rn
≥0, where

xb denotes the amount of budget allocated to battlefield b. An admissible strategy for each player
i ∈ {A,B} is an n-variate distribution Fi on Rn

≥0 that satisfies the following budget constraint:

Ex∼Fi

[∑
b∈B

xb

]
≤ Xi. (1)

Intuitively, a player may select any distribution over vectors x ∈ Rn
≥0 such that the budget ex-

penditure does not exceed her budget in expectation. Each player aims to maximize the expected
value won over the battlefields. We observe that the game is a two-player, constant-sum game
played in a single stage (Stage 1), and that an instance of the game can be succinctly denoted as
GL(XA, XB ,v). The General Lotto game is a relaxation of the Colonel Blotto game [3], in which
the players’ allocations must satisfy the budget constraint with probability 1.

The equilibrium characterization of the General Lotto game is well-understood [13,15], and each
instance GL(XA, XB ,v) is known to admit unique equilibrium payoffs as follows:

Fact 1. Let GL(XA, XB ,v) denote an instance of the General Lotto game, and Φ =
∑

b∈B vb. The
equilibrium payoff to player i ∈ {A,B} is Φ · L(Xi, X−i), where

L(Xi, X−i) =

{
Xi

2X−i
if Xi ≤ X−i

1− X−i

2Xi
if Xi > X−i,

(2)

and −i ∈ {A,B} \ {i} is the opposing player.

As discussed in Section 1.1, concessions in the two player General Lotto game can be considered
by introducing an additional stage (Stage 0) that occurs before the players engage in the General
Lotto game (Stage 1). Recall that, in Stage 0, player B makes either a budgetary concession or
battlefield concession, which then becomes binding and common knowledge before Stage 1 is played.
In the following proposition, we show that neither type of concession can ever increase a player’s
payoff over her payoff in the nominal General Lotto game:

Proposition 1. Consider the General Lotto game with XA, XB ≥ 0 and Φ ≥ 0. Neither player can
benefit from either a budgetary or battlefield concession.

Proof. We consider the scenario where player B makes either a budgetary or battlefield concession
in Stage 0. Since we make no assumption on the players’ relative strengths, considering player B’s
perspective is without loss of generality.

Firstly, from the equilibrium payoffs identified in Fact 1, if player B makes a budgetary conces-
sion, i.e., X ′

B ≤ XB , then it follows that Φ · L(X ′
B , XA) ≤ Φ · L(XB , XA) since, for fixed y, L(x, y)

is monotonically increasing in x. Second, and finally, if player B makes a battlefield concession, i.e.,
Φ′ ≤ Φ, then Φ′ · L(XB , XA) ≤ Φ · L(XB , XA) since L is nonnegative. ⊓⊔
3 In the case that the players allocate the same amount of budget to a battlefield, the player with higher
overall budget is conventionally awarded the win. However, the choice of tie-breaking rule has no effect
on equilibrium characterizations of General Lotto games [15], and hence, our results.
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2.2 Three-player General Lotto games with concessions

We have shown that concessions cannot provide payoff improvements in the two-player General
Lotto game. Thus, we consider the three-player game model proposed in [16] for the remainder of
this manuscript. This game consists of players A, B and C with respective budgetsXA, XB , XC > 0.
Player A is engaged in simultaneous General Lotto games against the players B and C over the
respective, disjoint fronts BB and BC . The game is played in two stages: in Stage 1, player A
allocates her budget between the two fronts; and, in Stage 2, the two resulting General Lotto games
are played. In Stage 2, players B and C receive the payoffs from their respective General Lotto
games, and player A receives the sum of her expected payoffs from both General Lotto games. An
instance of the game can be succinctly denoted as 3GL(XA, XB , XC ,vB ,vC), where vi denotes the
vector of battlefield values in front Bi, i ∈ {B,C}. As we have already done with the standard
General Lotto game, we propose a variation on the three-player General Lotto model that includes
a preliminary stage (Stage 0) in which player B makes either a budgetary or battlefield concession.
Below, we formalize the three stages of this variant, which we term the three-player General Lotto
game with concessions, where it is assumed that the players’ actions in each stage become binding
and common knowledge in subsequent stages:

– Stage 0: Player B selects one of the following concession formats:
• Budgetary concession: Player B discards a portion of her budget x ∈ (0, XB ]; or,
• Battlefield concession: Player B commits to allocating zero budget to a battlefield b ∈ BB .

– Stage 1: Player A allocates XA,B , XA,C ≥ 0 of her budget to the fronts BB and BC , respectively,
such that XA,B +XA,C ≤ XA holds.

– Stage 2: Player A engages players B and C in the two resulting General Lotto games. If
B made a budgetary concession of x ∈ (0, XB ] in Stage 0, then A and B play the game
GL(XA,B , XB − x,vB). Else, if B made a battlefield concession of b ∈ BB , then A and B play
the game GL(XA,B , XB ,vB,−b), where vB,−b denotes the vector of valuations for battlefields
BB \ {b}. Players A and C play the game GL(XA,C , XC ,vC). Player A’s payoff is the sum of
her expected payoffs in the two General Lotto games, and of vb only if player B selected to
concede the battlefield b in Stage 0. Each player i ∈ {B,C} receives the expected payoff from
her corresponding General Lotto game against A.

In order to identify player B’s optimal strategy in Stage 0 of the game we must first understand
player A’s strategic behaviour in Stage 1. The allocation rule that maximizes A’s cumulative payoff
in Stage 2 was characterized by Kovenock and Roberson [16]. We summarize this result below:

Fact 2. Consider Stage 1 of the three-player General Lotto game where the players’ budgets are
normalized (w.l.o.g.) such that XA = 1 and XB , XC > 0. Let ΦB , ΦC > 0 denote the cumulative
value of non-conceded battlefields in the fronts BB and BC , respectively. Define R1i, R2i, R3i and
R4, i ∈ {B,C} as the following regions:

R1i(Φi, Φ−i) := {(Xi, X−i) s.t. Φi/Φ−i > max{(Xi)
2, 1}/(XiX−i)}

∪ {(Xi, X−i) s.t. Xi < 1 and Φi/Φ−i = 1/(XiX−i)}
R2i(Φi, Φ−i) := {(Xi, X−i) s.t. Φi/Φ−i > Xi/X−i and 0 < 1−

√
ΦiXiX−i/Φ−i ≤ X−i}

R3i(Φi, Φ−i) := {(Xi, X−i) s.t. Φi/Φ−i ≥ Xi/X−i and 1−
√

ΦiXiX−i/Φ−i > X−i}
R4(Φi, Φ−i) := {(Xi, X−i) s.t. Φi/Φ−i = Xi/X−i and Xi +X−i ≥ 1}.

Player A’s optimal allocation XA,i is determined in closed-form as follows:
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– If (Xi, X−i) ∈ R1i(Φi, Φ−i), then XA,i = 1.

– If (Xi, X−i) ∈ R2i(Φi, Φ−i), then XA,i =
√

ΦiXiX−i/Φ−i.

– If (Xi, X−i) ∈ R3i(Φi, Φ−i), then XA,i =
√
ΦiXi/(

√
ΦiXi +

√
Φ−iX−i).

– If (Xi, X−i) ∈ R4(Φi, Φ−i), then any XA,i ∈ [1−X−i, Xi] is optimal,

where XA,−i = 1−XA,i in all the above cases.

Observe that the result above can be applied in Stage 1, whether or not player B makes a con-
cession. If player B makes no concessions (i.e., the nominal game), then her payoff in Stage 2 is
ΦB · L(XB , XA,B), where we use XA,B here to denote player A’s optimal allocation to the front
BB in Stage 1 when there is no concession. Otherwise, if player B makes a budgetary concession of
x ∈ (0, XB ], then her payoff in Stage 2 is ΦB ·L(XB −x,X ′

A,B), and if player B makes a battlefield
concession of b ∈ BB , then her payoff in Stage 2 is (ΦB −vb) ·L(XB , X

′′
A,B), where we use X

′
A,B and

X ′′
A,B here to denote player A’s optimal allocation in Stage 1 to the General Lotto game against

player B in response to the budgetary and battlefield concessions, respectively. Crucially, observe
that player B translates the point (XB , XC) to the left by making budgetary concessions, and alters
the parametric regions identified in Fact 2 by making battlefield concessions.

The following observations will be important in the proofs of the forthcoming results:

i. XA,B > XB holds in regions R1B (if XB < 1), R2B , R3B and R3C , while XA,B ≤ XB holds in
regions R1B (if XB ≥ 1), R1C , R2C and R4.

ii. The closed-form expressions of player A’s optimal allocation – and, thus, all of the players’
payoffs – are identical in regions R3B and R3C . Thus, it is equivalent to denote the union of
the parametric regions R3i(Φi, Φ−i), i ∈ {B,C}, simply by R3(ΦB , ΦC). Further, note that any
point (XB , XC) in R3 must satisfy XB +XC < 1 since XA,i > Xi, i ∈ {B,C}.

iii. As shown in Figure 2(a), the point (XB , XC) translates to the left in the (XB , XC)-plane
following a budgetary concession by player B. On the other hand, the regions identified in
Fact 2 remain unperturbed.

iv. In contrast, the concession of a battlefield with value v̂ does not translate the point (XB , XC),
but rather modifies the regions identified in Fact 2, as shown in Figure 2(b). In particular,
the line XC = ΦCXB/ΦB which serves as the boundary between the regions R1B ∪ R2B and
R1C∪R2C (i.e., themedian line) rotates counterclockwise about the origin following a battlefield
concession by player B. Crucially, since the points on the (XB , XC)-plane remain stationary,
a point (XB , XC) can move from one region to another (i.e., transit) following a battlefield
concession by either player.

3 Main Results

All of the results in this section focus on concessions in the three-player General Lotto game from the
perspective of player B. However, by flipping the players’ labels, all the results apply identically to
concessions from the perspective of player C. Throughout this section, we refer to concessions that
strictly improve the player’s payoff above her payoff in the nominal setting as beneficial budgetary
and battlefield concessions.
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Fig. 2: The regions dividing the possible player budgets (XB , XC) in Stage 2, as derived in [16] and reviewed
in Fact 2. (a) Illustration of the Stage 1 regions in the three-player General Lotto game with ΦB = ΦC .
The solid, black lines depict the borders between the labelled regions. In blue, we depict the impact of a
budgetary concession: the point (XB , XC) = (2, 0.5) translates to the left to (XB − x,XC) = (1, 0.5) after
player B makes a budgetary concession of x = 1. (b) We depict the impact of a battlefield concession within
the same setting as (a), but where B makes a battlefield concession of b with vb = ΦC/4. The solid, black
lines depict the borders between the regions for no concession (i.e., Rj(ΦB , ΦC)), while the dotted, blue lines
depict the borders between the regions after the concession of b (i.e., Rj(ΦB − vb, ΦC)). Observe that all
points on the plot, including (XB , XC) = (1.25, 1.375), remain stationary, while the regions change. Notably,
(XB , XC) is in region R1B if no concession is made, and in R1C after the concession of battlefield b.

Budgetary concessions. We first focus on budgetary concessions, and show that players cannot
improve their payoffs by making such concessions.

Theorem 1. Consider the three-player General Lotto game with XA = 1, XB , XC ≥ 0 and
ΦB , ΦC ≥ 0. Player B cannot benefit from a budgetary concession.

We present the proof of Theorem 1 in Appendix A, for ease of presentation. As the proof is fairly
technical, we provide an intuitive interpretation for the reader’s convenience. Suppose player B
makes a budgetary concession of x ∈ (0, XB ]. Observe that the budgetary concession leaves player
B more vulnerable to attacks from player A, since her budget is lowered, but the cumulative value
of the battlefields in front BB remains unchanged. As a result, the adversary will seek either the
same or greater payoff from the front BB . In the best case, the amount of payoff that the adversary
extracts from the front BB will stay the same, as is the case if the pairs (XB , XC) and (XB−x,XC)
are both in R1C(ΦB , ΦC), i.e., player A still sends no budget to BB . In all other settings, player
B’s payoff will strictly decrease after a budgetary concession.

Battlefield concessions. Next, we focus on battlefield concessions. Here, we are concerned with
identifying instances in which a battlefield concession is beneficial for player B, i.e., B’s resulting
payoff is higher than in the nominal game. In particular, we seek conditions on the budgets XA,
XB , and XC , and the players’ front values ΦB and ΦC for which there exists a beneficial battlefield
concession. Note here that we are not concerned with the particular vectors of battlefield valuations
vB ,vC that constitute each front. As such, we allow player B to have full choice over the conceded
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value v ∈ [0, ΦB ]. Our next result identifies sufficient conditions for the existence of beneficial
battlefield concessions in any three-player General Lotto game.

Theorem 2. Consider the three-player General Lotto game with XA = 1, XB , XC ≥ 0 and
ΦB , ΦC ≥ 0. Let v∗ = ΦB − ΦCXB/XC . The following conditions characterize sufficient condi-
tions under which player B has a beneficial battlefield concession of value vb = v∗:

(i) If (XB , XC) ∈ R1B(ΦB , ΦC) and XB , XC ≥ 1, then v∗ < ΦB/(2XB);
(ii) If (XB , XC) ∈ R1B(ΦB , ΦC), XB ≥ 1 and XC < 1, then

(ΦB − v∗) ·
[
1− 1−

√
ΦCXBXC/(ΦB − v∗)

2XB

]
> ΦB ·

(
1− 1

2XB

)
;

(iii) If (XB , XC) ∈ R1B(ΦB , ΦC), XB < 1 and XC ≥ 1, then v∗ < ΦB · (1−XB/2);
(iv) If (XB , XC) ∈ R1B(ΦB , ΦC), and XB , XC < 1, then

(ΦB − v∗) ·
[
1− 1−

√
ΦCXBXC/(ΦB − v∗)

2XB

]
>

ΦBXB

2
.

(v) If (XB , XC) ∈ R2B(ΦB , ΦC) and XC ≥ 1, then

v∗ < ΦB ·
[
1− XB

2
√

ΦBXBXC/ΦC

]
; and,

(vi) If (XB , XC) ∈ R2B(ΦB , ΦC), XC < 1 and XB +XC ≥ 1, then

(ΦB − v∗) ·
[
1− 1−

√
ΦCXBXC/(ΦB − v∗)

2XB

]
>

ΦBXB

2
√

ΦBXBXC/ΦC

.

We present the proof of Theorem 2 in Appendix B, for ease of presentation. In place of the proof,
we devote the remainder of this section to developing the intuition about this positive result.

First, we explain the significance of the value v∗ defined in the claim of Theorem 2. Observe that
v∗ is precisely the battlefield value that satisfies (ΦB−v∗)/XB = ΦC/XC . Thus, when XB+XC ≥ 1
and the point (XB , XC) is nominally in one of the regions R1B(ΦB , ΦC) or R2B(ΦB , ΦC), player
B can concede a battlefield of value vb = v∗ + ϵ, ϵ → 0+, to alter the regions in such a way that
(XB , XC) is in either R1C(ΦB − vb, ΦC) (when XC ≥ 1) or R2C(ΦB − vb, ΦC) (when XC < 1).
Note that if XB + XC < 1 instead, then the concession of the battlefield of value vb satisfies
(XB , XC) ∈ R3(ΦB − vb, ΦC), and does not offer any benefit to B.

Next, we consider simulation results identifying the parameter regime in which our conditions for
beneficial battlefield concessions hold. In Figure 3, we plot player B’s optimal battlefield concession,
where the players’ budgets are normalized such that XA = 1, and XB , XC ∈ [0, 1.2]. In each of
the panels, the cumulative values of battlefields in the two fronts are as follows: Figure 3a has
ΦB = 1, ΦC = 0.5, Figure 3b has ΦB = 1, ΦC = 1, and Figure 3c has ΦB = 1, ΦC = 2. Player B has
no beneficial concession in the white area. The various regions Rj , defined in Fact 2, are divided
by solid, black lines. The coloured areas’ labels coincide with the conditions identified in the claim
of Theorem 2.

As seen in Figure 3 and the definitions of Conditions (i)–(vi), the set of beneficial battlefield
concessions we identify appear in regions where the ratio between the cumulative value of the
battlefields in front BB and B’s initial budget endowment, ΦB/XB , is greater than the ratio ΦC/XC ,
and the players B and C together possess enough budget to force A to prioritize one of her General
Lotto games over the other (i.e., ΦB/XB > ΦC/XC and XB +XC ≥ 1). In such scenarios, player
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Fig. 3: Existence of beneficial battlefield concessions for player B. The coloured regions correspond with our
sufficient conditions for beneficial battlefield concessions for player B under normalized player budgets (i.e.,
XA = 1), for XB , XC ∈ [0, 1.2] and (a) ΦB = 1, ΦC = 0.5, (b) ΦB = 1, ΦC = 1, and (c) ΦB = 1, ΦC = 2. The
white area coincide with the points (XB , XC) for which our sufficient conditions are not met. The solid,
black lines divide the (XB , XC)-plane into the various regions, where R1C , R2C and R3 are as labelled in
plot (a), R2B is at the top left of each plot (not labelled), and R1B does not appear. In each of the coloured
areas, it is beneficial for player B to concede a battlefield of value v∗, and the different coloured areas’
labels coincide with Conditions (i)–(vi), all of which are defined in the claim of Theorem 2.

A primarily pursues her General Lotto game against B in the nominal game. By conceding enough
battlefield value v ∈ [0, ΦB ] such that (ΦB−v)/XB < ΦC/XC , player B can force A to prioritize her
game against C instead. Interestingly, if the difference between ΦB/XB and ΦC/XC is moderate,
then the gains from shifting A’s attention outweigh the loss of the forfeited battlefield’s value. If
the difference between ΦB/XB and ΦC/XC is too high, however, then too much value v must be
conceded by B to minimize her conflict with A, and the gains will not outweigh the losses.

In Section 1.3, we briefly describe the variant of the three-player General Lotto game studied
in [16]. Recall that, in their variant, the players B and C have the opportunity to negotiate an
alliance which entails a unilateral transfer of budgetary resources in Stage 0 of the game, and that
cases are identified in which forming an alliance is mutually beneficial for B and C. The results
in [16] suggest that mutually beneficial alliances only occur when the difference between the ratios
ΦB/XB and ΦC/XC is sufficiently large. In contrast, our findings show that beneficial battlefield
concessions only exist when the ratios ΦB/XB and ΦC/XC are close. This comparison suggests
that, if there are significant asymmetries in the players’ strengths relative to the values of their
respective contests, then cooperative mechanisms, such as alliances, provide strategic advantages;
meanwhile, if differences in players’ relative strengths are small, then unilateral mechanisms such
as battlefield concessions prevail.

4 Conclusions and Future Work

In this paper, we considered the viability of “concessions” as a component of strategic decision-
making in adversarial environments. We considered two types of concessions: budgetary concessions,
where a competitor voluntarily reduces one’s resource budget, and battlefield concessions, where a
player voluntarily forfeits a certain prize to her adversary. Intuitively, concessions should not offer
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strategic advantages as they weaken one’s competitive position. However, we demonstrated that
they do offer benefits if made correctly. We studied concessions under the framework of General
Lotto games, where we showed that neither type of concession offers benefits under the two-player
model. However, in settings where two players compete against a common adversary, we showed
that one of the two players can often improve her payoff by conceding a battlefield to the adversary.

This work provides several avenues for future study. First, we have shown that conceding bat-
tlefields is beneficial when General Lotto games are the underlying model of conflict. However, we
suspect this phenomenon is robust to larger classes of models, e.g., Tullock and other contest success
functions. Second, considering a richer setting wherein both players can simultaneously make con-
cessions to the adversary opens questions of what strategic outcomes are possible. Finally, though
we have studied concessions as a strategic component in two- and three-player settings, broader
forms of strategic pre-commitments and more general interaction networks could be considered.

A Proof of Theorem 1

Proof. The proof amounts to showing that player B’s payoff is nonincreasing for any budgetary
concession x ∈ (0, XB ] such that (XB − x,XC) is in any of the regions Rj .

We first consider the scenario where (XB , XC) ∈ R1C(ΦB , ΦC). Recall that, in this scenario,
player A commits no budget to the battlefields in the front BB . Thus, player B’s payoff before the
concession is ΦB , the highest possible payoff. Furthermore, (XB − x,XC) ∈ R1C(ΦB , ΦC) can only
hold if (XB , XC) ∈ R1C(ΦB , ΦC) as well, since the value 1−

√
ΦC(XB − x)XC/ΦB is increasing in

x. If (XB −x,XC) ∈ R4(ΦB , ΦC), then any budgetary concession x′ < x would be in either R1C or
R2C , since XB+XC ≥ 1 in R4, while any budgetary concession x′ > x would be in either R1B , R2B

orR3. Thus, conceding any amount x′ < x would guarantee B greater payoff sinceXA,B = 1−XA,C ,
and XA,C = 1 in R1C and XA,C > XC in R2C whereas XA,C ∈ [max{0, 1 −XB},min{1, XC}] in
R4. Further, conceding any amount x′ > x cannot guarantee B greater payoff since XA,B = 1 in
R1B , and XA,B > XB in R2B and R3, whereas XA,B ∈ [max{0, 1 − XC},min{1, XB}] in R4. In
all other regions, we show that player B’s payoff is strictly decreasing in x by checking the partial
derivative with respect to x ≥ 0:

If (XB − x,XC) ∈ R1B(ΦB , ΦC) and XB − x > 1, then

∂

∂x
ΦB

[
1− 1

2(XB − x)

]
= − ΦB

2(XB − x)2
< 0.

Else, if (XB − x,XC) ∈ R1B(ΦB , ΦC) and XB − x ≤ 1, then

∂

∂x

ΦB(XB − x)

2
= −ΦB

2
< 0.

If (XB − x,XC) ∈ R2B(ΦB , ΦC), then

∂

∂x

ΦB(XB − x)

2
√

ΦB(XB−x)XC

ΦC

= − ΦB

4
√

ΦB(XB−x)XC

ΦC

< 0.

If (XB − x,XC) ∈ R2C(ΦB , ΦC), then

∂

∂x
ΦB

1− 1−
√

ΦC(XB−x)XC

ΦB

2(XB − x)

 = −
ΦB

[
2−

√
ΦC(XB−x)XC

ΦB

]
4(XB − x)2

< 0,
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which is strictly negative as the condition 1−
√
ΦC(XB − x)XC/ΦB ≥ 0 must hold in R2C . Finally,

if (XB − x,XC) ∈ R3(ΦB , ΦC), then

∂

∂x

ΦB(XB − x)

2

√
ΦB(XB−x)√

ΦB(XB−x)+
√
ΦCXC

= −ΦB

2
− ΦB

√
ΦCXC

4
√
ΦB(XB − x)

< 0.

This concludes the proof. ⊓⊔

B Proof of Theorem 2

Before presenting the proof, we note that, in the case of battlefield concessions, we can disregard the
scenario when (XB , XC) ∈ R4(ΦB − v, ΦC), for any v ∈ [0, ΦB ]. To see why, consider a battlefield
concession of value v such that (XB , XC) is in R4, i.e., XB +XC ≥ 1 and (ΦB − v)/XB = ΦC/XC .
Observe that by conceding a battlefield of value slightly greater than v (i.e., v′ = v + ϵ for ϵ →
0+), player B obtains strictly higher payoff as (XB , XC) now falls in region R1C (if XC ≥ 1) or
region R2C (if XC < 1). Thus, in the following proof, we assume that any point (XB , XC) with
XB + XC ≥ 1 will transit directly from R1B(ΦB − v, ΦC) (if XB ≥ 1) or R2B(ΦB − v, ΦC) (if
XB < 1), to R1C(ΦB − v, ΦC) (if XC ≥ 1) or R2C(ΦB − v, ΦC) (if XC < 1), as v is increased,
without first passing through R4.

Proof. The proof amounts to verifying that the conditions laid out in the claim guarantee that
player B’s payoff after the battlefield concession is greater than her payoff in the nominal three-
player General Lotto game. Before we continue, it is critical to note that v∗ as defined in the claim
is precisely the value that satisfies (ΦB − v∗)/XB = ΦC/XC . Thus, for (XB , XC) ∈ R1B ∪R2B and
XB +XC ≥ 1, the battlefield concession of value v∗ satisfies (XB , XC) ∈ R1C ∪ R2C . We present
the remainder of the proof in parts corresponding with each of the conditions in the claim.
Conditions (i): The point (XB , XC) is nominally in the region R1B(ΦB , ΦC) with XB ≥ 1, and,
thus, player B’s nominal payoff is ΦB · (1− 1/2XB). Since XC ≥ 1, the battlefield concession of
value v∗ satisfies (XB , XC) ∈ R1C(ΦB − v∗, ΦC), and player B’s resulting payoff is ΦB − v∗. It
follows that the battlefield concession of value v∗ benefits player B if

ΦB − v∗ > ΦB ·
(
1− 1

2XB

)
.

Rearranging the above inequality gives the condition in the claim.
Condition (ii): Once again, player B’s nominal payoff is ΦB · (1− 1/2XB). Since XC < 1 and
XB +XC ≥ 1, the battlefield concession of value v∗ satisfies (XB , XC) ∈ R2C(ΦB − v∗, ΦC), and
player B’s resulting payoff is (ΦB − v∗) · [1− (1−

√
ΦCXBXC/(ΦB − v∗))/(2XB)]. It follows that

the battlefield concession of value v∗ benefits player B if

(ΦB − v∗) ·
[
1− 1−

√
ΦCXBXC/(ΦB − v∗)

2XB

]
> ΦB ·

(
1− 1

2XB

)
.

Condition (iii): Observe that this condition resembles Condition (i), except that XB < 1. Thus,
the only difference is that player B’s nominal payoff is ΦBXB/2. It follows that the battlefield
concession of value v∗ benefits player B if

ΦB − v∗ >
ΦBXB

2
.
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Rearranging the above inequality gives the condition in the claim.
Condition (iv): Observe that this condition resembles Condition (iii), except thatXC < 1. Thus, the
only difference is that playerB’s resulting payoff is (ΦB−v∗)·[1−(1−

√
ΦCXBXC/(ΦB − v∗))/(2XB)],

as in Condition (ii). It follows that the battlefield concession of value v∗ benefits player B if

(ΦB − v∗) ·
[
1− 1−

√
ΦCXBXC/(ΦB − v∗)

2XB

]
>

ΦBXB

2
√
ΦBXBXC/ΦC

.

Condition (v): The point (XB , XC) is nominally in the region R2B(ΦB , ΦC), and, thus, player B’s
nominal payoff is ΦB · XB/(2

√
ΦBXBXC/ΦC) since XB < 1 must hold in R2B . Since XC ≥ 1,

player B’s resulting payoff after the battlefield concession of value v∗ is ΦB − v∗, as in Condition
(i). It follows that the battlefield concession of value v∗ benefits player B if

ΦB − v∗ >
ΦBXB

2
√

ΦBXBXC/ΦC

.

Rearranging the above inequality gives the condition in the claim.
Condition (vi): This condition resembles Condition (iv), except that XC < 1. Thus, the only
difference is that player B’s resulting payoff is (ΦB −v∗) · [1− (1−

√
ΦCXBXC/(ΦB − v∗))/(2XB)],

as in Condition (ii). It follows that the battlefield concession of value v∗ benefits player B if

(ΦB − v∗) ·
[
1− 1−

√
ΦCXBXC/(ΦB − v∗)

2XB

]
>

ΦBXB

2
√
ΦBXBXC/ΦC

.

This concludes the proof. ⊓⊔
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